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Received 12 January 1988 

Abstract. Explicit coefficients of normal forms for generalised Hopf bifurcations are 
calculated to the seventh (but, to save space, they are given only to the fifth) order near 
the critical point. The real part of the third-order coefficient reproduces, at the critical 
point, the third-order focal value of Andronov et al. 

Of recent interest in non-linear dynamics is the study of dramatic changes in the 
behaviour of non-linear self-organising systems. One method, among others, of analys- 
ing these systems has now become systematic and standard: this can be outlined as 
follows [l]. The systems are usually described by a set of ordinary (or partial) 
differential equations with a large (even infinite) number of variables. Near the critical 
points of linear stability analysis, reduction procedures, such as centre manifold theory 
[2] or, more generally, the slaving principle [3,4], allow one to reduce the number of 
equations considerably. The resulting low-dimensional set of equations, known as 
generalised Ginzburg-Landau equations (GGLE), govern the evolution in or near the 
centre manifold. The GGLE are usually of quite general form. Normal form theory, 
originated by PoincarC [5] and Birkhoff [6] and recently advanced by Takens [7], 
Bogdanov (see [5, ch 61) and others, can be used to put the GGLE of general form into 
normal form, which is different for different kinds of bifurcations. 

Normal form theory has been developed by mathematicians. Concrete calculations 
of the coefficients of each normal form are of great interest to physicists and to those 
researchers in applied fields. One such attempt has recently been made by Knobloch 
[8] who calculated the normal form for the double-zero bifurcations. Another interest- 
ing bifurcation is the Hopf bifurcation or generalised Hopf bifurcation, i.e. a Hopf 
bifurcation with higher codimension, for which Golubitsky and Langford [9] have 
given a complete and systematic classification and all unfoldings for the cases where 
the second (H2) or third (H3) or both of the Hopf hypotheses fail, but with the 
restriction that the codimension is less than three. In this letter, we give the results of 
our calculations of the coefficients of the normal form for the case where only hypotheses 
H1 and H2 (see [9]) are satisfied. 

Near the Hopf bifurcation point, the slaving principle leads to a complex GGLE of 
the form [ l ]  

d U /  d t = A,u + P2( U, U *) + . . . + P,, ( U, U * ) + . . . (1) 

P,,(U, U*)= C , O U n + C , - I , U n - ' U * + . .  (2) 

d z / d t =  (A,+g31~12+g51z14+g71~16+. . . )z (3) 

where U* stands for the complex conjugate of U and P,, is defined as 

Equation (1) can be transformed into a normal form 
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by successive non-linear transformations. The R H S  of (3), generally an infinite series, 
contains only the terms which are resonant at the exact critical point Re A, = 0. How 
many terms should be retained depends on how high the codimension of the R H S  of 
(3) is. The original Hopf bifurcation is a codimension-1 bifurcation with g, = 0, so 
that g, and higher-order terms can be safely neglected. The case g3 = 0 but g, # 0 is a 
codimension-2 Hopf bifurcation. In this case, the calculation of g, is necessary. If 
we have more parameters to vary so that g, = g ,  = 0 we have a codimension-3 Hopf 
bifurcation and the calculation of g, is required. All higher-order terms than g, can 
be omitted. The transformation from (1) to (3) is given by 

U = z +  Q2(Z, z") + Q,(Z, z*) +. . . (4) 

with 

Qn =BnOZn+B,-llz"-lz*+. . .+BO,Z*". ( 5 )  

The central problem is to determine the transformation (4) and to give the explicit 
expressions of gi in terms of C,. The solutions of (3) were studied by Takens [7] and 
the bifurcation diagram by Golubitsky and Langford [9], but the explicit coefficients 
are unknown. The result of Andronov et a1 [ 101 and Marsden and McCracken [ 111 
are equivalent to Re(g3) at the critical point. In order to cope with high codimension 
problems and to calculate the oscillatory motion near the critical point, we have to 
generalise the previous results in two directions: (i)  to calculate higher-order coefficients 
of the normal form than g3 and (ii) to release the restriction to exact critical points. 

An essential point in constructing the transformation near the critical points is the 
following observation. According to the theory of PoincarC [ 5 ] ,  one can, in principle, 
transform away all non-linearities in equation ( 1 )  because the eigenvalues are no longer 
resonant away from the critical point. But the transformation so determined contains 
some singularities at the exact critical point. In the applications, however, we usually 
intend to pass through the critical points smoothly with the variation of control 
parameters. Therefore we must retain terms such as Iz12"z, which are resonant at the 
critical point. Correspondingly, we let 

Using the above ideas, we have made a calculation of g,, g, and g, using the 
symbolic manipulation program SMP.  Due to the length of the expression for g,, we 
give only the results for g, and g,: 

= 0 in the transformation (4). 
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B22 = [ c 2 2  - (83 + g9B1 I + 3B02C30+ 3Bt2Co3 + ( 2 4  I + BTO) c 2 1  + (2BTI + B2o) c 1 2  

+ (2B12 + B:i + 2BozBzo)C20+ (BI  IBTI + &oBTo+ BozB&) CI I 

+ ( BT: + 2BT2 + 2 B& BZ0) Co2]/ (2A + A, ) 

Bl3 = [Cl3 - 2gTBo2 + 2Bo2C21 + (Bl I + 2BTO)Cl2+ 3BTI CO3 + 2(Bo2B11+ Bo31C20 

+(B?o+ B,~+BOZBT,+BIIBTO)CII+~BTIBTOCO,]/~A~ 

BO4 = [ CO4 + BO2c12+ 3BfOC03 + Bi2C20+ (BO3 + B 0 2 B T O )  cl 1 

+ (2BTO+ BT,2)Co21/(4A: - A,) 

g, = c 3 2  + 4B02C40 + (3B11+ BTO) c 3 1 +  2(BTl+ B20) c 2 2  + 3 Bt2C13 + 3Bg3C03 

+ 3(B1* + B:, + 2B02B20)C30 

+ (2Bo2B$2 + 2BlIBTl+ 2BI,B20+ 2B20B$O)C21 

+ (2BT2 + B30+ BT:+ 2BZ2B1 + 2B,*,BTO+ 2BT1B20)C12 + 6B,*,BFl CO3 

+ 2(B22 + B12B20) c 2 0 +  ( B?2 + B31 + B02B$3 + Bo*2B12 + B 1  1 BT2 

+ BTOB30) c1 1 + 2( BZ3 BTO + BTI BT2 + BT3) CO2 . 
With the above expressions, we can easily obtain the amplitude and renormalised 
frequency of the oscillatory motion near the critical point, not only for soft (second- 
order transition, codimension 1) but also for hard (first-order transition, higher 
codimention) onset of oscillation. In particular, g3 and g, can be used to judge 
analytically whether a codimension-2 or 3 Hopf bifurcation is possible or not. At the 
exact critical point, the real part of g3 reduces to 

Re(g3Ic= Re(~21)-~m(~11~~0)/Im(~,) 
which is in complete accord with the third-order focal value of Andronov et a1 [lo], 
if we write it in terms of real coefficients. But it is simpler and more concise than that 
given there, due to the use of complex variables. General connections between normal 
form theory and Andronov’s focal values are now being made. The corresponding 
results will be given elsewhere. 
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